Infinity (symbol: ∞) refers to something without any limit, and is a concept relevant in a number of fields, predominantly mathematics and physics. The English word infinity derives from Latin infinitas, which can be translated as "unboundedness", itself derived from the Greek word apeiros, meaning "endless".[1]
In mathematics, "infinity" is often treated as if it were a number (i.e., it counts or measures things: "an infinite number of terms") but it is not the same sort of number as the real numbers. In number systems incorporating infinitesimals, the reciprocal of an infinitesimal is an infinite number, i.e., a number greater than any real number. Georg Cantor formalized many ideas related to infinity and infinite sets during the late 19th and early 20th centuries. In the theory he developed, there are infinite sets of different sizes (called cardinalities).[2] For example, the set of integers is countably infinite, while the set of real numbers is uncountably infinite.
History
Ancient cultures had various ideas about the nature of infinity. The ancient Indians and Greeks, unable to codify infinity in terms of a formalized mathematical system, approached infinity as a philosophical concept.
Early Greek
The earliest attestable accounts of mathematical infinity come from Zeno of Elea (c. 490 BCE? – c. 430 BCE?), a pre-Socratic Greek philosopher of southern Italy and member of the Eleatic School founded by Parmenides. Aristotle called him the inventor of the dialectic. He is best known for his paradoxes, described by Bertrand Russell as "immeasurably subtle and profound".
In accordance with the traditional view of Aristotle, the Hellenistic Greeks generally preferred to distinguish the potential infinity from the actual infinity; for example, instead of saying that there are an infinity of primes, Euclid prefers instead to say that there are more prime numbers than contained in any given collection of prime numbers (Elements, Book IX, Proposition 20).
However, recent readings of the Archimedes Palimpsest have hinted that Archimedes at least had an intuition about actual infinite quantities.
Early Indian
The Isha Upanishad of the Yajurveda (c. 4th to 3rd century BCE?) states that "if you remove a part from infinity or add a part to infinity, still what remains is infinity".
The Indian mathematical text Surya Prajnapti (c. 400 BCE) classifies all numbers into three sets: enumerable, innumerable, and infinite. Each of these was further subdivided into three orders:
Enumerable: lowest, intermediate, and highest
Innumerable: nearly innumerable, truly innumerable, and innumerably innumerable
Infinite: nearly infinite, truly infinite, infinitely infinite
In the Indian work on the theory of sets, two basic types of infinite numbers are distinguished. On both physical and ontological grounds, a distinction was made between asaṃkhyāta ("countless, innumerable") and ananta ("endless, unlimited"), between rigidly bounded and loosely bounded infinities.
source: Wikipedia
No comments:
Post a Comment